
EOLANG and φ-calculus
Yegor Bugayenko
yegor256@gmail.com
Moscow, Russia

Abstract
Object-oriented programming (OOP) is one of the most
popular paradigms used for building software systems.
However, despite its industrial and academic popularity,
OOP is still missing a formal apparatus similar to λ-
calculus, which functional programming is based on.
There were a number of attempts to formalize OOP, but
none of them managed to cover all the features available
in modern OO programming languages, such as C++ or
Java. We have made yet another attempt and created
φ-calculus. We also created EOLANG (also called EO),
an experimental programming language based on φ-
calculus.

Keywords: Object-Oriented Programming, Object Cal-
culus

1 Introduction
It is difficult to define what exactly is OOP, as “the
term has been used to mean different things,” according
to Stefik and Bobrow [89]. Madsen and Møller-Pedersen
[68] claimed that “there are as many definitions of OOP
as there papers and books on the topic.” Armstrong
[3] made a noticeable observation: “When reviewing
the body of work on OO development, most authors
simply suggest a set of concepts that characterize OO,
and move on with their research or discussion. Thus,
they are either taking for granted that the concepts are
known or implicitly acknowledging that a universal set
of concepts does not exist.”

1.1 Lack of Formal Model

The term OOP was coined by Kay [62] in 1966 [61] and
since then was never introduced formally. Back in 1982,
Rentsch [82] predicted: “Everyone will be in a favor of
OOP. Every manufacturer will promote his products as
supporting it. Every manager will pay lip service to it.
Every programmer will practice it (differently). And no
one will know just what it is.”

There is a fundamental problem in OOP—the lack of
a rigorous formal model, as was recapped by Eden and
Hirshfeld [36]: “Unfortunately, architectural formalisms
have largely ignored the OO idiosyncrasies. Few works
recognized the elementary building blocks of design and
architecture patterns. As a result of this oversight, any
attempt to use formalisms for the specification of OO
architectures is destined to neglect key regularities in
their organization.”

There is no uniformity or an agreement on the set
of features and mechanisms that belong in an OO lan-
guage as “the paradigm itself is far too general,” as was
concluded by Nierstrasz [77] in his survey.

OO and semi-OO programming languages treat OOP
differently and have variety of different features to follow
the concept of object-orientedness. For example, Java
has classes and types (interfaces) but doesn’t have mul-
tiple inheritance [2], C++ has multiple inheritance but
doesn’t directly support mixins [19], Ruby and PHP
don’t have generics and types, but have traits [11],
JavaScript doesn’t have classes, but has prototypes [83],
and so on.

1.2 Complaints of Programmers

Although the history of OOP goes back for more than
50 years to the development of Simula [26], OOP is
under heavy criticism since the beginning to nowadays,
mostly for its inability to solve the problem of software
complexity.
According to Graham [46], “somehow the idea of

reusability got attached to OOP in the 1980s, and no
amount of evidence to the contrary seems to be able to
shake it free,” while “OOP offers a sustainable way to
write spaghetti code.” West [93] argues that the contem-
porary mainstream understanding of objects (which is
not behavioral) is “but a pale shadow of the original
idea” and “anti-ethical to the original intent.” Gosling
and McGilton [45] notes that “unfortunately, ‘object
oriented’ remains misunderstood and over-marketed as
the silver bullet that will solve all our software ills.”

1.3 High Complexity

Nierstrasz [79] said that “OOP is about taming complex-
ity through modeling, but we have not mastered this yet.”
Readability and complexity issues of OO code remain
unsolved till today. Shelly [88] claimed that “Reading
an OO code you can’t see the big picture and it is often
impossible to review all the small functions that call
the one function that you modified.” Khanam [63] in
a like manner affirmed: “Object oriented programming
promotes ease in designing reusable software but the
long coded methods makes it unreadable and enhances
the complexity of the methods.”
The complexity of OO software is higher than the

industry would expect, taking into account the amount
of efforts invested into the development of OO languages.

Yegor Bugayenko

As was concluded by Bosch [16], “OO frameworks have
number of problems that complicate development, usage,
composition and maintenance of software.”
For example, the infamous legacy code has its

additional overhead associated with OO languages—
inheritance mechanism, which “allows you to write
less code at the cost of less readability,” as explained
by Carter [20]. It is not infrequently when “inheritance
is overused and misused,” which leads to “increased
complexity of the code and its maintenance,” as noted
by Bernstein [8].

The lack of formalism encouraged OOP language cre-
ators to invent and implement language features, often
known as “syntax sugar,” which are convenient for some
of them in some special cases but jeopardize the con-
sistency of design when being used too often and by
less mature programmers. The most obvious outcome
of design inconsistencies is high complexity due to low
readability, which negatively affects the quality and leads
to functionality defects.

1.4 Solution Proposed

EO was created in order to eliminate the problem of
complexity of OOP code, providing 1) a formal object
calculus and 2) a programming language with a reduced
set of features. The proposed φ-calculus represents an
object model through data and objects, while operations
with them are possible through abstraction, application,
and decoration. The calculus introduces a formal appa-
ratus for manipulations with objects.

EO, the proposed programming language, fully imple-
ments all elements of the calculus and enables implemen-
tation of an object model on any computational platform.
Being an OO programming language, EO enables four
key principles of OOP: abstraction, inheritance, poly-
morphism, and encapsulation.

The following four principles stay behind the appara-
tus we introduce:

• An object is a collection of attributes, which are
uniquely named bindings to objects. An object is
an atom if its implementation is provided by the
runtime.

• An object is abstract if at least one of its attributes
is free—isn’t bound to any object. An object is
closed otherwise. Abstraction is the process of
creating an abstract object. Application is the
process of making a copy of an abstract object,
specifying some or all of its free attributes with
objects known as arguments. Application may lead
to the creation of a closed object, or an abstract
one, if not all free attributes are specified with
arguments.

• An object may decorate another object by binding
it to the φ attribute of itself. A decorator has its
own attributes and the attributes of its decoratee.

• A special attribute δ may be bound to data, which
is a computation platform dependable entity not
decomposable any further. Dataization is a process
of retrieving data from an object, by taking what
the δ attribute is bound to. The dataization of an
object at the highest level of composition leads to
the execution of a program.

The rest of the paper is dedicated to the discussion
of the syntax of the language we created based on the
calculus, the calculus itself, its semantics, and pragmat-
ics. In order to make it easier to understand, we start
the discussion with the syntax of the language, while
the calculus is derived from it. Then, we discuss the
key features of EO and the differences between it and
other programming languages. We also discuss how the
absence of traditional OOP features, such as mutability
or inheritance, affect the complexity of code. At the end
of the paper we overview the work done by others in the
area of formalization of OOP.

2 Syntax
The Fig. 1 demonstrates the entire syntax of EO language
in BNF. Similar to Python [67], indentation in EO is part
of the syntax: the scope of a code block is determined by
its horizontal position in relation to other blocks, which
is also known as “off-side rule” [64].
There are no keywords in EO but only a few spe-

cial symbols denoting grammar constructs: > for the
attributes naming, . for the dot notation, [] for the
specification of parameters of abstract objects, () for
scope limitations, ! for turning objects into constants,
: for naming arguments, " (double quotes) for string
literals, ’ (single quotes) for one-character literals, @ for
the decoratee, ^ for referring to the parent object, and
$ for referring to the current object. Attributes, which
are the only identifiers that exist in EO, may have any
Unicode symbols in their names, as long as they start
with a small English letter and don’t contain spaces or

line breaks: test-File and i文件 are valid identifiers.
Java-notation is used for numbers, strings, and character
literals.

2.1 Identity, State, and Behavior

According to Booch et al. [15], an object in OOP has
state, behavior, and identity: “The state of an object
encompasses all of the properties of the object plus the
current values of each of these properties. Behavior is
how an object acts and reacts, in terms of its state
changes and message passing. Identity is that property
of an object which distinguishes it from all other objects.”

EOLANG and φ-calculus

program ::= [license] [metas] objects
objects ::= object eol { object eol }
license ::= { comment } eol
metas ::= { meta } eol
comment ::= ‘#’ { any } eol
meta ::= ‘+’ name [‘ ’ any { any }] eol
name ::= /[a-z]/ { any }
object ::= (foreign — local)
foreign ::= abstraction ‘ /’ name
local ::= (abstraction — application) details
details ::= [tail] { vtail }
tail ::= eol tab { object eol } untab
vtail ::= eol ref [htail] [suffix] [tail]
abstraction ::= attributes [suffix]
attributes ::= ‘[’ attribute { ‘ ’ attribute } ‘]’

attribute ::= ‘@’ — name [‘...’]
suffix ::= ‘ ’ ‘>’ ‘ ’ (‘@’ — name) [‘!’]
ref ::= ‘.’ (name — ‘^’)
application ::= head [htail]

htail ::= application ref
— ‘(’ application ‘)’

— application ‘:’ name
— application suffix
— application ‘ ’ application

head ::= name — data — ‘@’ — ‘$’

— ‘^’ — ‘*’ — name ‘.’

data ::= bytes — string — integer
— char — float — regex

bytes ::= byte { ‘-’ byte }
byte ::= /[\dA-F][\dA-F]/
string ::= /"[^"]*"/

integer ::= /[+-]?\d+|0x[a-f\d]+/
char ::= /’([^’]|\\\d+)’/
regex ::= //.+/[a-z]*/

float ::= /[+-]?\d+(\.\d+)?/ [exp]
exp ::= /e(+|-)?\d+/

Figure 1. The full syntax of EO in BNF. eol is a line ending that preserves the indentation of the previous line. tab
is a right-shift of the indentation, while untab is a left-shift. any is any symbol excluding eol and ‘ ’. The texts
between forward slashes are Perl-style regular expressions.

The syntax of EO makes a difference between these three
categories.

This is a declaration of an abstract object book , which
has a single identity attribute isbn :

1 [isbn] > book

To make a new object with a specific ISBN, the book

has to copied, with the data as an argument:

2 book "978-1519166913" > b1

Here, b1 is a new object created. Its only attribute is
accessible as b1.isbn .
A similar abstract object, but with two new state

attributes, would look like:

3 [isbn] > book2

4 "Object Thinking" > title

5 memory > price

The attribute title is a constant, while the price

represents a mutable chunk of bytes in computing mem-
ory. They both are accessible similar to the isbn , via
book2.title and book2.price . It is legal to access
them in the abstract object, since they are bound to
objects. However, accessing book2.isbn will lead to an
error, since the attribute isbn is free in the abstract
object book2 .
A behavior may be added to an object with a new

inner abstract object set-price :

6 [isbn] > book3

7 "Object Thinking" > title

8 memory > price

9 [p] > set-price

10 ^.price.write p > @

The price of the book may be changed with this one-
liner:

11 book3.set-price 19.99

2.2 Indentation

This is an example of an abstract object vector , where
spaces are replaced with the “ ” symbol in order to
demonstrate the importance of their presence in specific
quantity (for example, there has to be exactly one space
after the closing square bracket at the second line and
the > symbol, while two spaces will break the syntax):

12 # This is a vector in 2D space

13 [dx dy] > vector

14 sqrt. > length

15 add.

16 dx.pow 2

17 dy.pow 2

The code at the line no. 12 is a comment. Two free
attributes dx and dy are listed in square brackets at
the line no. 13. The name of the object goes after the
> symbol. The code at the line no. 14 defines a bound
attribute length . Anywhere when an object has to get
a name, the > symbol can be added after the object.
The declaration of the attribute length at the

lines 14–17 can be written in one line, using dot no-
tation:

Yegor Bugayenko

18 ((dx.pow 2).add (dy.pow 2)).sqrt > length

An inverse dot notation is used in order to simplify the
syntax. The identifier that goes after the dot is written
first, the dot follows, and the next line contains the part
that is supposed to stay before the dot. It is also possible
to rewrite this expression in multiple lines without the
usage of inverse notation, but it will look less readable:

19 dx.pow 2

20 .add

21 dy.pow 2

22 .sqrt > length

Here, the line no. 19 is the application of the object
dx.pow with a new argument 2 . Then, the next line
is the object add taken from the object created at the
first line, using the dot notation. Then, the line no. 21
is the argument passed to the object add . The code at
the line no. 22 takes the object sqrt from the object
constructed at the previous line, and gives it the name
length .
Indentation is used for two purposes: either to define

attributes of an abstract object or to specify arguments
for object application, also known as making a copy.
A definition of an abstract object starts with a list of
free attributes in square brackets on one line, followed
by a list of bound attributes each in its own line. For
example, this is an abstract anonymous object (it doesn’t
have a name) with one free attribute x and two bound
attributes succ and prev :

23 [x]

24 x.add 1 > succ

25 x.sub 1 > prev

The arguments of add and sub are provided in a
horizontal mode, without the use of indentation. It is
possible to rewrite this code in a vertical mode, where
indentation will be required:

26 [x]

27 x.add > succ

28 1

29 x.sub > prev

30 1

This abstract object can also be written in a horizontal
mode, because it is anonymous:

31 [x] (x.add 1 > succ) (x.sub 1 > prev)

2.3 EO to XML

Due the nesting nature of EO, its program can be
transformed to an XML document. The abstract ob-
ject vector would produce this XML tree of elements
and attributes:

32 <o name="vector">

33 <o name="dx"/>

34 <o name="dy"/>

35 <o name="length" base=".sqrt">

36 <o base=".add">

37 <o base=".pow">

38 <o base="dx"/>

39 <o base="int" data="int">2</>

40 </o>

41 <o base=".pow">

42 <o base="dy"/>

43 <o base="int" data="int">2</>

44 </o>

45 </o>

46 </o>

47 </o>

Each object is represented by an <o/> XML element
with a few optional attributes, such as name and base .
Each attribute is either a named reference to an object
(if the attribute is bound, such as length), or a name
without a reference (if it is free, such as dx and dy).

2.4 Data Objects and Arrays

There are a few abstract objects which can’t be directly
copied, such as float and int . They are created by
the compiler when it meets a special syntax for data, for
example:

48 [r] > circle

49 r.mul 2 3.14 > circumference

This syntax would be translated to XML:

50 <o name="circle">

51 <o name="r"/>

52 <o base=".mul" name="circumference">

53 <o base="r"/>

54 <o base="int" data="int">2</o>

55 <o base="float" data="float">3.14</o>

56 </o>

57 </o>

Each object, if it is not abstract, has a “base” attribute
in XML, which contains that name of an abstract object
to be copied. The objects int and float are abstracts,
but their names can’t be used directly in a program,
similar to how r or mul are used. The only way to
make a copy of the abstract object int is to use a
numeric literal like 2 . The literal 3.14 is turned into a
copy of the object float .

The abstract objects which can’t be used directly and
can only be created by the compiler through data—are
called data. The examples of some possible data are in
the Tab. 1.

EOLANG and φ-calculus

Data Example Size
bytes 1F-E5-77-A6 4
string "Hello, world!" 13

char ’X’ or ’\07’ 1
int -42 4
float 3.1415926 or 2.4e-34 4
bool true or false 1
regex /[a-z]+.+/m 9

Table 1. The syntax of all data with examples. The
“Size” column denotes the number of bytes to be used
by the value in the column “Example”. UTF-8 is the
encoding used in string , char , and regex objects.

The array is yet another data, which can’t be copied
directly. There is a special syntax for making arrays,
which looks similar to object copying:

58 * "Lucy" "Jeff" 3.14

59 * > a

60 (* 'a')

61 true

62 * > b

The code at the line no. 58 makes an array of three
elements: two strings and one float. The code at the
lines 59–61 makes an array named a with another array
as its first element and true as the second item. The
code at the line no. 62 is an empty array with the name
b .

2.5 Varargs

The last free attribute in an abstract object may be a
vararg, meaning that any number or zero arguments may
be provided. All of them will be packaged in an array
by the compiler, for example:

63 [x...] > sum

64 sum 8 13 -9

Here, at the first line the abstract object sum is defined
with a free vararg attribute x . At the second line a copy
of the abstract object is made with three arguments.
The internals of the sum will see x as an array with
three elements inside.

2.6 Scope Brackets

Brackets can be used to group object arguments in hori-
zontal mode:

65 sum (div 45 5) 10

The (div 45 5) is a copy of the abstract object div

with two arguments 45 and 5 . This object is itself the
first argument of the copy of the object sum . Its second
argument is 10 . Without brackets the syntax would
read differently:

66 sum div 45 5 10

This expression denotes a copy of sum with four ar-
guments.

2.7 Inner Objects

An abstract object may have other abstract objects as
its attributes, for example:

67 # A point on a 2D canvas

68 [x y] > point

69 [to] > distance

70 length. > len

71 vector

72 to.x.sub (^.x)

73 to.y.sub (^.y)

The object point has two free attributes x and y

and the attribute distance , which is bound to an ab-
stract object with one free attribute to and one bound
attribute len . The inner abstract object distance

may only be copied with a reference to its parent object
point :

74 .distance

75 point

76 5:x

77 -3:y

78 point:to

79 13:x

80 3.9:y

The parent object is (point 5 -3) , while the object

(point 13 3.9) is the argument for the free attribute
to of the object distance . Suffixes :x , :y , and :to

are optional and may be used to denote the exact name of
the free attribute to be bound to the provided argument.
Inner object may refer to the parent object by using

the ^ symbol.

2.8 Decorators

An object may extend another object by decorating it:

81 [center radius] > circle

82 center > @

83 [p] > is-inside

84 leq. > @

85 ^.@.distance $.p

86 ^.radius

The object circle has a special attribute @ at the
line no. 82, which denotes the decoratee: an object to be
extended, also referred to as “component” by Gamma
et al. [40].
The decorator circle has the same attributes

as its decoratee center , but also its own attribute
is-inside . The attribute @ may be used the same
way as other attributes, including in dot notation, as
it is done at the line no. 85. However, this line may be
re-written in a more compact way, omitting the explicit

Yegor Bugayenko

reference to the @ attribute, because all attributes of
the center are present in the circle ; and omitting
the reference to $ because the default scope of visibility
of p is the object is-inside :

87 ^.distance p

The inner object is-inside also has the @ attribute:
it decorates the object leq (stands for “less than equal”).
The expression at the line no. 85 means: take the parent
object of is-inside , take the attribute @ from it, then
take the inner object distance from there, and then
make a copy of it with the attribute p taken from the

current object (denoted by the $ symbol).
The object circle may be used like this, to under-

stand whether the (0, 0) point is inside the circle at
(−3, 9) with the radius 40:

88 circle (point -3 9) 40 > c

89 c.is-inside (point 0 0) > i

Here, i will be a copy of bool behaving like true

because leq decorates bool .
It is also possible to make decoratee free, similar to

other free attributes, specifying it in the list of free
attributes in square brackets.

2.9 Anonymous Abstract Objects

An abstract object may be used as an argument of
another object while making a copy of it, for example:

90 files

91 "/tmp"

92 *

93 [f]

94 f.isDir > @

Here the object files is copied with two arguments,
the string "/tmp" and the array with a single element,
which is an abstract object with a single free attribute f .
The files will use this abstract object, which doesn’t
have a name, in order to filter out files while traversing
the tree of directories. It will make a copy of the abstract
object and then treat it as a boolean value in order to
make a decision about the file.

The syntax may be simplified and the abstract object
may be inlined (the array is also inlined):

95 files

96 "/tmp"

97 * ([f] (f.isDir > @))

An anonymous abstract object may have multiple
attributes:

98 [x] (x.add 1 > succ) (x.sub 1 > prev)

This object has two attributes succ and prev , and
doesn’t have a name.

2.10 Constants

EO is a declarative language with lazy evaluations. This
means that this code would read the input stream two
times:

99 [] > hello

100 stdout > say

101 sprintf

102 "The length of %s is %d"

103 stdin.nextLine > x!

104 x.length

The sprintf object will go to the x two times. First

time, in order to use it as a substitute for %s and the
second time for %d . There will be two round-trips to the
standard input stream, which obviously is not correct.
The exclamation mark at the x! solves the problem,
making the object by the name x a constant. This means
that all attributes of x are cached. Important to notice
that the cache is not deep: the attributes of attributes
are not cached.
Here, x is an attribute of the object hello , even

though it is not defined as explicitly as say . Anywhere a
new name shows up after the > symbol, it is a declaration
of a new attribute in the nearest object abstraction.

2.11 Metas and License

A program may have a comment at the beginning of
the file, which is called a license. The license may be
followed by an optional list of meta statements, which
are passed to the compiler as is. The meaning of them
depends on the compiler and may vary between target
platforms. This program instructs the compiler to put
all objects from the file into the package org.example

and helps it resolve the name stdout , which is external
to the file:

105 # (c) John Doe, 2021

106 # All rights reserved.

107 # The license is MIT

108

109 +package org.example

110 +alias org.eolang.io.stdout

111

112 [args...] > app

113 stdout > @

114 "Hello, world!\n"

2.12 Atoms

Some objects in EO programs may need to be plat-
form specific and can’t be composed from other existing
objects—they are called atoms. The object app uses the
object stdout , which is an atom. Its implementation
would be provided by the runtime. This is how the object
may be defined:

EOLANG and φ-calculus

115 +rt jvm org.eolang:eo-runtime:0.1.24

116 +rt ruby eolang:0.1.0

117

118 [text] > stdout /bool

The /bool suffix informs the compiler that this object
must not be compiled from EO to the target language.
The object with this suffix already exists in the target
language and most probably could be found in the library
specified by the rt meta. The exact library to import
has to be selected by the compiler. In the example above,
there are two libraries specified: for JVM and for Ruby.
The bool part after the / is the name of object,

which stdout decorates.
Atoms in EO are similar to “native” methods in Java

and “extern” methods in C#.

3 Calculus
The proposed φ-calculus is based on set theory [57] and
lambda calculus, representing objects as sets of pairs
and their internals as λ-terms. The rest of the section
contains formal definitions of data, objects, attributes,
abstraction, application, decoration, and dataization.

3.1 Objects and Data

Definition 1. An object is a set of ordered pairs
(ai, vi) such that ai is an identifier, all ai are different,
and vi is an object.

An identifier is either φ, ρ, or, by convention, a text
without spaces starting with a small-case English letter
in typewriter font.

The object at the line no. 1 may be represented as

book = {(isbn ,∅)} , (1)

where isbn is an identifier and ∅ is an empty set, which
is a proper object, according to the Def. 1.

Definition 2. An object may have properties of data,
which is a computation platform dependable entity and
is not decomposable any further within the scope of
φ-calculus.

What exactly is data may depend on the implemen-
tation platform, but most certainly would include byte
arrays, integers, floating-point numbers, string literals,
and boolean values.

The object at the lines 3–5 may be represented as

book2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(isbn ,∅)
(title , "Object Thinking")
(price , memory)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (2)

where isbn , title , and price are identifiers, memory
is an object defined somewhere else, and the text in
double quotes is data.

3.2 Attributes

Definition 3. In an object x, a is a free attribute iff
(a,∅) ∈ x; it is a bound attribute iff ∃(a, v) ∈ x and
v /= ∅.

In the Eq. 2, identifiers isbn , title , and price are
the attributes of the object book2 . The attribute isbn

is free, while the other two are bound.

Definition 4. If x is an object and ∃(a, v) ∈ x, then v
may be referenced as x.a; this referencing mechanism is
called dot notation.

Both free and bound attributes of an object are ac-
cessible using the dot notation. There is no such thing
as visibility restriction in φ-calculus: all attributes are
visible to all objects outside of the one they belong to.

It is possible to chain attribute references using dot
notation, for example book2 . price . neg is a valid ex-
pression, which means “taking the attribute price from
the object book2 and then taking the attribute neg

from it.”

Definition 5. If x(ai, vi) is an object, then x̂, a set
consisting of all ai, is its scope and the cardinality of
∣x̂∣ is the arity of x.

For example, the scope of the object at the Eq. 2
consists of three identifiers: isbn , title , and price .

3.3 Abstraction

Definition 6. An object x is abstract iff at least one
of its attributes is free, i.e. ∃(a,∅) ∈ x; the process of
creating such an object is called abstraction.

An alternative “arrow notation” may be used to denote
an object x in a more compact way, where free attributes
stay in the parentheses on the left side of the mapping
symbol ↦ and pairs, which represent bound attributes,
stay on the right side, in double-square brackets. The
Eq. 2 may be written as

book2 (isbn) ↦ J
title ↦ "Object Thinking" ,
price ↦ memory

K.

(3)

3.4 Application

Definition 7. If x is an abstract object and y is an
object where ŷ ⊆ x̂, then an application of y to x is a
copy of x, a new object that consists of pairs (a ∈ x̂, v)
such that v = y.a if x.a = ∅ and v = x.a otherwise.

Application makes some free attributes of x bound—
by binding objects to them. The produced object has
exactly the same set of attributes, but some of them,
which were free before, become bound.

Yegor Bugayenko

It is not expected that all free attributes turn into
bound ones during application. Some of them may re-
main free, which will lead to creating a new abstract
object. To the contrary, if all free attributes are substi-
tuted with arguments during copying, a newly created
object will be closed.
Once set, bound attributes may not be reset. This

may be interpreted as immutability property of objects.
Arrow notation may also be used to denote object

copying, where the names of the attributes, which remain
free, stay in the brackets on the left side of the mapping
symbol ↦, while objects P provided as arguments stay
on the right side, in the brackets. For example, the object
at the line no. 74 may be written as

point (x ↦ 5 , y ↦ -3). distance (
p ↦ point (x ↦ 13 , y ↦ 3.9)

),
(4)

and may further be simplified since the order of parame-
ters is obvious:

point (5 , -3). distance (point (13 , 3.9)). (5)

3.5 Inner and Parent Objects

Definition 8. If an object x is bound to an attribute
of an object y, then x.ρ denotes y; the object x is inner
object, while y is its parent; an object, which is not
bound to any attributes, is called anonymous.

For example, the object at the lines 6–10 has three
inner objects bound to attributes title , price , and
set-price :

book3 (isbn) ↦ J
title ↦ "Object Thinking" ,
price ↦ memory ,
set-price (p) ↦ J
φ ↦ ρ. price . write (p)

K
K,

(6)

where ρ. price refers to the attribute price of the par-
ent object book3 . It is not always required to mention
ρ explicitly, however it it may be present for the sake of
disambiguation.
Since the same object may be bound to more then

one attribute, the parent ρ may depend on where the
object is bound.

3.6 Decoration

Definition 9. If x and y are objects and x.φ = y, then
∀a(x.a = y.a) if a /∈ x̂; this means that x is decorating
y.

Here, φ is a special identifier denoting the object being
decorated within the scope of the decorator.

For example, the object at the lines 81–86 would be
denoted by this formula:

circle (center , radius) ↦ J
φ ↦ center ,
is-inside (p) ↦ J
φ ↦ ρ.φ. distance (p). leq (radius)

K
K,

(7)

while the application of it would look like:

c ↦ circle (point (-3 , 9), 40), (8)

producing:

c ↦ J
center ↦ point (-3 , 9),
radius ↦ 40 ,
φ ↦ center ,
is-inside (p) ↦ J
φ ↦ ρ. distance (p). leq (radius)

K
K.

(9)

Because of decoration, the expression ρ.φ. distance
in the Eq. 7 is semantically equivalent to the expression
ρ. distance in the Eq. 9.
The following expression makes a new object is ,

which represents a sequence of object applications ending
with a copy of leq :

is ↦ c . is-inside (point (1 , 7)), (10)

producing:

c ↦ J
center ↦ point (-3 , 9),
radius ↦ 40 ,
φ ↦ center ,
is-inside ↦ J
p ↦ point (1 , 7),
φ ↦ ρ. distance (p). leq (radius)

K
K.

(11)

3.7 Atoms

Definition 10. If λs.M is a function of one argument s
returning an object, then it is an abstract object called
an atom, M is its λ-term, and s is its free attribute.

For example, the atom at the line no. 63 would be
represented as

sum (x) ↦ λs.

s[0]. x . size −1

∑
i=0

s[0]. x . get (i), (12)

where the function calculates an arithmetic sum of all
items in the array x and returns the result as a data.
The argument of the function is a vector s where the

EOLANG and φ-calculus

first element is the object under consideration, the sec-
ond element is its parent object, the third element is
the parent of the parent, and so on. Thus, s[0] is the
object sum itself, while s[0]. x is its inner object x ,
and s[0]. x . get (0) is the first element of it, if it is an
array. It is expected that the array has an attribute
size representing the total number of elements in the
array.
Atoms may have their λ-terms defined outside of φ-

calculus formal scope. For example, the object at the
line no. 118 would be denoted as

stdout (text) ↦ λs.Mstdout, (13)

where Mstdout is a λ-term defined externally.

3.8 Locators

Definition 11. Object locator is a unique dot-separated
not-empty collection of identifiers prepended by either
ξ, ρ, or Φ.

Locators are used to avoid ambiguity when referencing
objects. For example, the Eq. 9 may be refined as

c ↦ J
center ↦ Φ. point (Φ. -3 ,Φ. 9),
radius ↦ Φ. 40 ,
φ ↦ ξ. center ,
is-inside (p) ↦ J
φ ↦ ρ. distance (ξ. p). leq (
ρ. radius

)
K

K,

(14)

where ξ denotes the current abstract object and Φ refers
to the anonymous abstract “root” object. Defining an
object in a global scope means binding it to the object
Φ, unless it is an anonymous object, as the one at the
lines 26–30.

The most precise and complete formula for the object
in the Eq. 11 would also include attribute names for the
object application:

c ↦ J
center ↦ Φ. point (
x ↦ Φ. -3 ,
y ↦ Φ. 9

),
radius ↦ Φ. 40 ,
φ ↦ ξ. center ,
is-inside (p) ↦ J
φ ↦ ξ.ρ. distance (to ↦ ξ. p). leq (

other ↦ ξ.ρ. radius
)

K
K.

(15)

Φ

v2

book2

v1

M1

me
mo
ry

price

Φ. memor
y

v4

t
i
t
l
e

v3

isbn

d4

δ

d4 → "Object Thinking"

Figure 2. The object graph with a few objects from the
Eq. 2, where d4 is "Object Thinking" data and M1 is
a lambda expression defined in the runtime.

4 Semantics
In order to explain how declarative expressions of φ-
calculus can be translated into imperative instructions
of a target computing platform, we 1) represent object
model as object graph, 2) introduce a set of graph modi-
fying instructions (GMI), 3) define transformation rules
between φ-calculus expressions and GMIs, 4) suggest
dataization algorithm turning object graph into function
composition.

4.1 Object Graph

Consider the object from lines the lines 3–5, which is
also represented by the expression in the Eq. 1. The
Fig. 2 represents it as a graph.
The vertice at the top of the graph is the “root” ob-

ject (see Def. 11), where all other objects that are not
anonymous (see Def. 8) are bound to. The vertice v2
is the abstract object book2 . The name of the object
within the scope of Φ is the label on the edge from Φ
to v2. The labeled edge between v2 and v3 makes the
object v3 an attribute of v2 with the identifier isbn .
Even though the object v3 is ∅, the graph depicts it as
any other object.
The rectangle attached to the vertice v1 makes it an

atom (see Def. 10) and M1, the content of the rectan-
gle, is its λ-term. Atoms are depicted with double-lined
circles. The data d4 attached to the vertice v4 by the
named edge δ is the text "Object Thinking" .

There are six graphical elements that may be present
on an object graph: A circle with a name inside it is an
object. A named edge from a circle to another circle is
an attribute of the departing object. A snake edge is
the ρ attribute. A dotted edge connects a copy with the
origin. A double-bordered circle is an atom. A rectangle
attached to a circle contains the λ-term of the atom.

Yegor Bugayenko

4.2 GMI

In order to formalize the process of drawing an object
graph, we introduced a few GMIs:

ADD (v1) Adds a new vertice v1 to the graph:

v1

BIND (v1, v2, a) Adds a solid labeled uni-directed edge
a from an existing vertice v1 to an
existing vertice v2, making a snake
edge if a equals to ρ and adding a
reverse snake edge otherwise:

v1 v2
a

DOT (e1,m, v3, e2)Breaks the edge e1 going from v1 to
v2, adding a new atom vertice v3,
connecting v1 to v3 with an e2 labeled
the same way as e1, connecting v3 and
v2 with an edge labeled as t , and
attaching a rectangle with a special
lambda expression to v3:

v1 v2
ae1 v1 v2

v3

R(ξ. t ,m, s)

a
e
2

t

COPY (e1, v3, e2) Breaks the edge e1 going from v1 to v2,
adding a new vertice v3, connecting v1
and v3 with an edge e2 labed the same
way as e1, and connecting v3 and v2
with a dotted edge:

v1 v2
ae1 v1 v2

v3

a
e
2

ATOM (v1,M1) Attaches a rectangle to an existing
vertice v1 with a lambda expression
M1 inside and adds the second border
to v1:

v1 v1

M1

REF (e1, v1, l, a) Starting from the vertice v1, finds a
vertice v2 by the locator l and links
them with an edge e1 named as a with
a supplementary label l (omitting the
circle around the vertice v2 is a visual
trick that helps avoid a long arrow,
which would need to be drawn from v1
to the found v2 otherwise):

v1 v2
a

l
e1

All GMIs are idempotent, meaning that they have
no additional effect if they are called more than once
with the same input parameters. The object graph at
the Fig. 2 may be generated with the following ordered
sequence of GMIs:

119 ADD(Φ)
120 ADD(v1);
121 ATOM(v1, M1);

122 BIND(Φ, v1, memory);

123 ADD(v2);
124 BIND(Φ, v2, book2);

125 ADD(v3);
126 BIND(v2, v3, isbn);

127 ADD(v4);
128 BIND(v2, v4, title);

129 REF(e, v2, Φ.memory, price);

130 ADD(d4);
131 BIND(v4, d4, δ);

4.3 Transformation Rules

In order to formalize the mechanism of turning φ-calculus
formulas into an object graph, we introduced a number
of transformation rules. R1 explains how an abstract
object gets transformed to a sequence of GMIs:

vi∣x(a1, a2, . . . , an) ↦ JEK
ADD (vi▹x) BIND (vi, vi▹x, x)

∀j ∈ [1;n] (ADD (vi▹x▹j) BIND (vi▹x, vi▹x▹j , aj))
vi▹x∣E

R1

The v∣E notation at the premise part of the rule
means “E stands while the focus is at v,” where E is an
expression and v is an element of the graph, for example
a vertice or an edge.
The hierarchical vertice indexing notation is used in

order to avoid duplication of indexes. Thus, the index
of the vertice vi▹x▹1 is unique on the graph. The symbol
“▹” is used as a delimiter between parts of the index. We
decided to use this symbol instead of a more traditional
dot because the semantic of the dot is already occupied
by the dot notation in φ-calculus.

For the sake of simplicity of the graphs, the hierarchical
notation won’t be used in practical examples below.

EOLANG and φ-calculus

Instead, single integer indexes will be used to denote
vertices and edges, being incremented sequentially in
order to avoid duplication.

Consider for example the abstract object bound to the
attribute is-inside in the Eq. 7. The premise v5∣E
will stand when the focus is at the vertice representing
the object circle , where v5 would be the vertice of it
(the numbers 5 and 12 don’t mean anything and are just
placeholders):

v5∣
x

¬−−−−−−−−
is-inside (

a1
¬
p) ↦ J

E
¬−−−−
φ ↦ . . .K

ADD (v12) BIND (v5, v12, is-inside)
ADD (v13) BIND (v12, v13, p)

v12∣φ ↦ . . .

The effect of all GMIs generated by this rule would be
the following on an object graph:

v5 v5

v12

is-inside

v13

p

The E part of the premise is the internals of the ab-
stract object is-inside . It will be processed by one
of the rules, while looking at v12. R2 explains how a
comma-separated series of expressions break into indi-
vidual rules (since the expression inside is-inside is
the only one, this rule is not applicable):

vi∣E1, E2, . . . , En

vi∣E1 vi∣E2 . . . vi∣En
R2

R3 turns an attribute into an edge on the graph and
then continues processing the expression that goes after
the object being referred, by looking at the created edge:

vi∣a ↦ x E

REF (ei▹a, vi, x, a) vi∣x ei▹a∣E
R3

The notation “x E” in the premise of R3 splits the
expression under consideration into two parts: the “head”
of a single identifier x and the “tail” of the expression as
E. In the conclusion part of the rule a vertice is found
using the locator x and then a new edge is added, starting
from the current vertice and arriving to the vertice found.
Strictly, x must be a single identifier. However, in a more
relaxed mode it is possible to have a longer locator as
the head of the expression. For example, the expression
ρ.ρ. p can be split strictly on ρ as the head and ρ. p as
the tail; but it also can be split on ρ.ρ as the head and
p as the tail. Longer locators in the head part of the
expression are only allowed if the vertice they refer to
already exists on the graph. R3 also processes x in the

conclusion part, providing other rules the opportunity
to deal with it. In particular, R6 may process x if it is
data.

The tranformation of the internals of is-inside with
R3 would look like the following:

v12∣
a
¬
φ↦

x
¬
ρ

E
¬−−−−−−−−−−−−−−−−−−−−−−−−
. distance (p). leq (radius)

REF (e14, v12, v5, φ) e14∣. distance (p). leq (radius)
Here ρ represents the x part of the premise and the
expression that starts with a dot represents the E part.
At the conclusion, x is being replaced with v5, because ρ
from the vertice v12 points to it: it is the parent object
of v12. The edge e14 created by the REF is used in the
expression that finishes the conclusion, triggering the
processing of the tail part of the formula: the head is
the ρ, while the tail is the dot and everything that goes
after it. Visually, the execution of R3 would produce the
following changes on the object graph (the vertice v13 is
not shown for the sake of brevity):

v5

v12

is-inside

v5

v12

is-inside

φ

e
1
4

The dot notation is resolved by R4, which unlike
previously seen rules, deals with an edge instead of a
vertice:

ei∣.x E

DOT (ei, x, vi▹x, ei▹x▹1) ei▹x▹1∣E
R4

Here x is the identifier that goes after the dot and E
is everything else, the tail of the expression. In this
example, the instance of the rule would look like this:

e14∣
.x

¬−−−−−−−
. distance

E
¬−−−−−−−−−−−−−−
(p). leq (radius)

DOT (e14, distance , v15, e16) e16∣(p). leq (radius)
Visually, the execution of this rule would lead to the
following modifications on the object graph:

v5

v12

is-inside

φ

e
1
4

v5

v12

is-inside

v15

R(ξ. t , distance , s)

φ
e 1

6

t

The application of arguments to abstract objects is
transformed to the object graph by R5, which also deals
with an edge instead of a vertice:

ei∣(E1) E2

COPY (ei, vi▹1, ei▹2) vi▹1∣E1 ei▹2∣E2
R5

Yegor Bugayenko

To continue the processing of the expression inside the
abstract object is-inside the rule may be applied as
the following:

e16∣
E1

¬−−−−−−−−
(to ↦ ξ. p)

E2
¬−−−−−−−−−−−
. leq (radius)

COPY (e16, v17, e18) v17∣ to ↦ ξ. p e18∣. leq (radius)
Visually, this rule would produce the following modifica-
tions on the graph:

v12

v15

M15

φ
e 1

6

v12

v15

M15

φ
e 1

6 v17φ
e18

The last rule deals with data, such as integers, string
literals, and so on (together referred to as Γ):

vi∣Γ
ADD (di) BIND (vi, di, δ) di → Γ

R6

Here the mapping di → Γ is added to the graph as a
comment.

There is also one rule, which transforms atoms to the
object graph by R7 attaching lambda expressions to
vertices:

v∣λs.M
ATOM (v,M)R7

Visually, the rule would produce the following modifica-
tions on the graph for the Eq. 13:

Φ

v1

stdout

Φ

v1

Mstdout

stdout

In order to demonstrate a larger example, the Fig. 3
shows an object graph, which the described rules would
generate by transforming the object is from the Eq. 10.

4.4 Dataization

We define “dataization” as a process of turning an object
into data, which said object represents. For example, the
object at the line no. 64 represents an algebraic sum
of three integers. The process of dataization expects
each object to know what data it represents and if it
doesn’t know it, the object must know where to get the
data. The object sum is not data, but it knows how to
calculate it. Once being asked to turn itself into data
it will ask all its three inner object the same question:
“What data you represent?” They are integers and will
return the data they have attached to their attributes
δ. Then, the object sum , using its λ-term, will calculate

the arithmetic sum of the numbers returned by its inner
objects.

Visually, the object sum from the line no. 64 may be
represented by the following object graph:

Φ

v1

∑ai

sum

v2

v3

a 1

8

δ

v4

a
2

13

δ

v5

a
3

-9

δ

The dataization of v2, which is an anonymous copy of
sum with three arguments v3, v4, and v5, would produce
an arithmetic sum of three integers calculated by the
λ-term of v1.
We suggest the following recursive object discovery

algorithm, which finds a vertice in a graph by its locator
l and returns a vertice connected to it as an attribute a:
function R(l, a, S)
v ← l
if l is a locator with a dot inside
a
′
← after the last dot in l

l
′
← before a

′
in l

v ← R(l′, a′, S)
end if
if v = ξ then v ← S[0]
if v = ρ then v ← S[1]
if v has a-edge to τ then return τ
if v has φ-edge to τ then return R(τ, a, τ + S)
if v has a dotted edge to τ then return R(τ, ξ.a, τ +S)
if v has M then return R((λs.M v + S), a, S)
return ⊥

end
Here, S is a vector of vertices, while v + S produces

a new vector where v stays at the first position and all
other elements of S follow. The notation S[i] denotes
the i-th element of the vector, while counting starts with
zero.

The notation (λs.M v+S) means creating a function
from the λ-term M with one parameter s and then
calculating it with the argument v + S. It is expected
that the function returns a locator of a vertice or the
vertice itself, where the locator can be derived as the
shortest path from Φ to the given vertice. The vector
s, provided to the function as its parameter, is used in
M when it is necessary to use R in order to find some
object.

If a function returns data, which doesn’t have a locator,
a new vertice vi is created implicitly with the locator Φ.vi,

EOLANG and φ-calculus

and a single attribute δ connected to the data returned,
where i is the next available index in the graph.

For example, R(Φ. c . center . y , δ,∅) being executed
on the graph presented at the Fig. 3 would return the
vertice d21, which is +9.

We also define a dataization function, which turns an
object into data:
function D(l)
return R(l, δ,∅)

end
The execution of the function D(x), where x is the

“program” object, leads to the execution of the entire
program. Program terminates with an error message
when D(x) is ⊥.

5 Pragmatics
First, the source code of EO is parsed by ANTLR4-
powered parser and an intermediate representation is
built in XML, as was demonstrated in the Section 2.3.
The output format is called XMIR. One .eo file with
the source code in EO produces one XMIR file with .xml

extension.
XMIR is then refined via a pipeline of XSLT stylesheets.

For example, XMIR at the lines 50–57 contains a reference
to the object r at the line no.53. An XSL transforma-
tion adds an attribute ref to the XML element <o/> ,
referring it to the line inside XML document, where the
object r is defined:

132 <o name="circle">

133 <o name="r"/> <!-- Line no.133 -->

134 <o base=".mul" name="square">

135 <o base="r" ref="133"/>

136 <o base="int" data="int">2</o>

137 <o base="float" data="float">3.14</o>

138 </o>

139 </o>

There are over two dozens XSL transformations in
the pipeline, which are applied to the XMIR in a specific
order. New transformations can be added to the pipeline
for example in order to detect inconsistencies in XMIR,
enforce new semantic rules, or optimize object structures.

Then, XMIR can be translated to machine code, byte-
code, C++ source code, or any other target platform
language. We implemented a translator to Java source
code, which represents XMIR objects as Java classes and
attributes as pairs in encapsulated java.util.HashMap

instances.
Then, Java source code is compiled to bytecode by

OpenJDK Java compiler. Then, runtime dependencies
with atoms are taken from Maven Central and placed to
the Java classpath.

Finally, JRE runs the program through Main.java

class together with all .jar dependencies in the class-
path.

6 Examples
The following examples demonstrate a few Java programs
and their alternatives in EO.

6.1 Fibonacci Number

Fibonacci sequence is a sequence of positive integers
such that each number is the sum of the two preceding
ones, starting from 0 and 1, where:

Fn = Fn−1 + Fn−2.

The formula can be implemented in Java using recur-
sion, as suggested by Deitel and Deitel [27, p.743] (code
style is modified):

140 public class FibonacciCalculator {

141 public long fibonacci(long n) {

142 if (n < 2) {

143 return n;

144 } else {

145 return fibonacci(n-1) +

fibonacci(n-2);↪

146 }

147 }

148 }

The same functionality would look in EO like the
following:

149 [n] > fibo

150 if. > @

151 n.less 2

152 n

153 add.

154 fibo (n.sub 1)

155 fibo (n.sub 2)

6.2 Determining Leap Year

Consider a program to determine whether the year, pro-
vided by the user as console input, is leap or not. The
Java code, as suggested by Liang [66, pp.105–106], would
look like this (the code style was slightly modified):

156 import java.util.Scanner;

157 public class LeapYear {

158 public static void main(String[] args) {

159 Scanner input = new Scanner(System.in);

160 System.out.print("Enter a year: ");

161 int year = input.nextInt();

162 boolean isLeapYear =

163 (year % 4 == 0 && year % 100 != 0) ||
164 (year % 400 == 0);

165 System.out.println(year +

166 " is a leap year? " + isLeapYear);

Yegor Bugayenko

Φ v1
circle

v2

c
e
n
t
e
r

v3

ra
di
us

v4

is-inside

v6

p

v2
φ

ξ. center

v5

M5

v4

v25

φ

v3

o
t
h
e
r

ρ
.ρ
.
r
a
d
i
u
s

v7

M7

v5

v24

t

v6

t
o

ρ
.ρ
.
p

v2
t

ρ.ρ.ρ.φ

v15Φ
point

v16

x

v17

y

v14

M14

d
i
s
t
a
n
c
e

v18
to

v10Φ
c

v1

v19

ra
di
us

d19

δ

v11
c
e
n
t
e
r

v15

v20

x

d20

δ

v21

y

d21

δ

v12Φ
is

v1

v10

v13

p

v15

v22

x

d22

δ

v23

y

d23

δ

d19 → +40
d20 → −3
d21 → +9
d22 → +1
d23 → +7

M14 →

√
(R(ξ. to . x , δ, s) − R(ρ. x , δ, s))2+
+(R(ξ. to . y , δ, s) − R(ρ. y , δ, s))2

M5 → R(ξ. t , leq , s)
M7 → R(ξ. t , distance , s)

Figure 3. The graph of the object is from the Eq. 10.

167 }

168 }

The same functionality would require the following
code in EO:

169 +alias org.eolang.*

170 +alias org.eolang.io.stdout

171 +alias org.eolang.io.stdin

172 +alias org.eolang.txt.scanner

173

174 [args] > main

175 seq > @

176 stdout

177 "Enter a year:"

178 stdout

179 concat

180 scanner > year

181 stdin

182 .nextInt

183 " is a leap year?"

184 or.

185 and.

186 eq. (mod. year 4) 0

187 not. (eq. (mod. year 100) 0)

188 eq. (mod. year 400) 0

6.3 Division by Zero

As was explained by Eckel [34, p.314], since division by
zero leads to a runtime exception, it is recommended to
throw a more meaningful exception to notify the user
about the exceptional situation. This is how it would be
done in Java:

189 class Balance {

190 // Calculate how much each user should

191 // get, if we have this amount of users

192 float share(int users) {

193 if (users == 0) {

194 throw new RuntimeException(

195 "The number of users can't be zero"

196);

197 }

198 // Do the math and return the number

199 }

200 }

This is how this functionality would look in EO:

201 [] > balance

202 [users] > share

203 if. > @

204 eq. users 0

205 []

206 "The number can't be zero" > msg

EOLANG and φ-calculus

207 "InvalidInput" > type

208 # Do the math and return

If the users argument is zero, an abstract object will
be returned, with a free body and two bound attributes
msg and type :

209 []

210 "The number of users can't be zero" > msg

211 "InvalidInput" > type

Once this object will be touched by the runtime, it
will cause the entire program to halt. This behavior is
similar to what is happening in Java with exceptions.

6.4 Date Builder

Creating a date/time object is a common task for most
programs, which is resolved in JDK8 [85] through the
Calendar.Builder class, which suggests method cas-
cading [7], also known as fluent interface [39], for its
users (an innacurate and simplified example):

212 Calendar c = new Calendar.Builder()

213 .setYear(2013)

214 .setMonth(4)

215 .setDay(6)

216 .build();

The implementation of an immutable version of the
Calendar.Builder class would look like this in Java:

217 class Builder {

218 private final int year;

219 private final int month;

220 private final int day;

221 Builder(int y, int m, int d) {

222 this.year = y;

223 this.month = m;

224 this.day = d;

225 }

226 Builder setYear(int y) {

227 return new Builder(

228 y, this.month, this.day

229);

230 }

231 Builder setMonth(int m) {

232 return new Builder(

233 this.year, m, this.day

234);

235 }

236 Builder setDay(int d) {

237 return new Builder(

238 this.year, this.month, d

239);

240 }

241 Calendar build() {

242 return new Calendar(

243 this.year, this.month, this.day

244);

245 }

246 }

This is how this functionality would look in EO, com-
bining the builder and the calendar in one object:

247 [year month day] > calendar

248 [y] > setYear

249 calendar y month day > @

250 [m] > setMonth

251 calendar year m day > @

252 [d] > setDay

253 calendar year month d > @

254 # The functionality of the calendar

255 # goes in here...

This is how it would be used in EO:

256 calendar

257 .setYear 2013

258 .setMonth 4

259 .setDay 6

6.5 Streams

Working with a flow of binary or text data requires
the use of stream objects, as explained by Metsker [73,
p.226]. A non-canonical Java stream may be presented
by a two-methods interface and a sample implementation
of it:

260 interface Stream {

261 void print(String text);

262 void close();

263 }

264 class ConsoleStream implements Stream {

265 @Override

266 void print(String text) {

267 System.out.println(text);

268 }

269 @Override

270 void close() {

271 // Maybe something else

272 }

273 }

Then, it may be required to prepend all lines with a
prefix. In order to do this a decorator design pattern
may be used, as explained by Gamma et al. [40, p.196]:

274 class PrefixedStream implements Stream {

275 private final Stream origin;

276 PrefixedStream(Stream s) {

277 this.origin = s;

278 }

279 @Override

280 void print(String text) {

281 this.origin.print("DEBUG: " + text);

282 }

Yegor Bugayenko

283 @Override

284 void close() {

285 this.origin.close();

286 }

287 }

The PrefixedStream encapsulates an object of the
same type it implements. The decorator modifies the
behavior of some methods (e.g., print()), while remain

others untouched (e.g., close()). This is how the same
design would look in EO:

288 [] > console_stream

289 [text] > print

290 stdout > @

291 text

292 [] > close

293 # Do something here

Then, the decorator would look like this:

294 [@] > prefixed_stream

295 [text] > print

296 ^.@.print

297 concat

298 "DEBUG: "

299 text

Here, the ^.@ attribute is the one that is being
decorated. The object prefixed_stream has attribute
close even though it is not declared explicitly.
If the object is used like this, where stdout is another

stream, printing texts to the console:

300 prefixed_stream(stdout).print("Hello,

world!")↪

Then the console will print:

301 DEBUG: Hello, world!

7 Mappings
There are language features in modern object-oriented
programming languages, which do not exist in EO, for ex-
ample: multiple inheritance, annotations, encapsulation
and information hiding, mixins and traits, constructors,
classes, assertions, static blocks, aspects, NULL refer-
ences, generics, lambda functions, exception handling,
reflection, type casting, and so on. We assume that all
of them may be represented with the primitive language
features of EO. There is no complete mapping mecha-
nism implemented yet, but there are a few examples in
this section that demonstrate how some features may be
mapped from Java to EO.

7.1 Inheritance

This Java code utilizes inheritance in order to reuse the
functionality provided by the parent class Shape in the
child class Circle :

302 abstract class Shape {

303 private float height;

304 Shape(float h) {

305 height = h;

306 }

307 float volume() {

308 return square() * height;

309 }

310 abstract float square();

311 }

312 final class Circle extends Shape {

313 private float radius;

314 Circle(float h, float r) {

315 super(h);

316 radius = r;

317 }

318 float square() {

319 return 3.14 * radius * radius;

320 }

321 };

The method volume relies on the functionality pro-
vided by the abstract method square , which is not
implemented in the parent class Shape : this is why the
class is declared as abstract and the method square

also has a modifier abstract . It is impossible to make
an instance of the class Shape . A child class has to be
define, which will inherit the functionality of Shape and
implement the missing abstract method.

The class Circle does exactly that: it extends the
class Shape and implements the method square with
the functionality that calculates the square of the circle
using the radius. The method volume is present in the
Circle class, even though it is implemented in the
parent class.

This code would be represented in EO as the following:

322 [child height] > shape

323 [] > volume

324 child.square.mul ^.height

325 [height radius] > circle

326 shape $ height > @

327 [] > square

328 3.14.mul

329 radius.mul

330 radius

There is not mechanism of inheritance in EO, but
decorating replaces it with a slight modification of the
structure of objects: the parent object shape has an
additional attribute child , which was not explicitly
present in Java. This attribute is the link to the object
that inherits shape . Once the volume is used, the at-
tribute refers to the child object and the functionality

EOLANG and φ-calculus

from circle is used. The same mechanism is imple-
mented in Java “under the hood”: EO makes it explicitly
visible.

7.2 Classes and Constructors

There are no classes in EO but only objects. Java, on the
other hand, is a class-oriented language. In the snippet
at the lines the lines 302–321, Shape is a class and a
better way of mapping it to EO would be the following:

331 [] > shapes

332 [c h] > new

333 # Some extra functionality here, which

334 # stays in the class constructor in Java

335 []

336 c > child

337 h > height

338 [] > volume

339 child.square.mul ^.height

Here, shapes is the representation of Java class
Shape . It technically is a factory of objects. In order
to make a new, its attribute new must be used, which
is similar to the operator new in Java. The functional-
ity of a Java constructor may also be implemented in
the attribute new , such as a validation of inputs or an
initialization of local variables not passed through the
constructor.

7.3 Mutability

All objects in EO are immutable, which means that their
attributes can’t be changed after an object is created.
Java, on the other hand, enables mutability. For example,
both height and radius in the lines the lines 302–321
are mutable attributes, which can be modified after an
object is instantiated. However, the attribute radius

of the EO object circle at the lines the lines 325–330
can’t be modified. This may be fixed by using the object
memory :

340 [height r] > circle

341 memory r > radius

342 shape $ height > @

343 [] > square

344 3.14.mul

345 radius.mul

346 radius

An instance of the object memory is created when
the object circle is created, with the initial value of
r . Then, replacing the object stored in the memory is
possible through its attribute write :

347 circle 1.5 42.0 > c

348 c.radius.write 45.0

This code makes an instance of circle with the
radius of 42.0 . Then, the radius is replaced with 45.0 .

7.4 Type Reflection

There are no types in EO, while Java not only have
at least one type for each object, but also enable the
retrieval of this information in runtime. For example, it
is possible to detect the type of the shape with this code:

349 if (s instanceof Circle) {

350 System.out.println("It's a circle!");

351 }

In EO this meta-information about objects must be
stored explicitly in object attribute, in order to enable
similar reflection on types:

352 [height radius] > circle

353 "circle" > type

354 # The rest of the object

Now, checking the type of the object is as easy as
reading the value of its attribute type . The mechanism
can be extended with more additional information during
the transition from Java to EO, such as information about
attributes, decoratee, etc.

7.5 Exception Handling

There are no exceptions in EO, but there are objects that
can’t be dataized. A traditional Java try/catch/finally

statements may be represented by an object try pro-
vided by EO runtime. For example, consider this Java
code:

355 try {

356 Files.write(file, data);

357 } catch (IOException e) {

358 System.out.println("Can't write to file");

359 } finally {

360 System.out.println("This happens anyway");

361 }

It may be translated to EO:

362 try

363 []

364 files.write > @

365 file

366 data

367 []

368 stdout > @

369 "Can't write to file"

370 []

371 stdout > @

372 "This happens anyway"

Now, throwing an exception is returning an object
that can’t be dataized and handling the exception is
checking for whether the object has φ attribute or not.
All of this is done by the object try .

Yegor Bugayenko

7.6 Control Flow Statements

Java has a few control flow statements, such as for ,
while , do , if , continue , break . They don’t exist
in EO. However, EO may have objects that implement
the required functionality in runtime, often with the help
of mutable objects:

373 while (i < 100) {

374 if (i % 2 == 0) {

375 System.out.prinln("even!");

376 }

377 i++;

378 }

This code may be translated to EO as the following:

379 []

380 memory > i

381 while. > @

382 i.less 100

383 seq

384 if.

385 eq. (i.mod 2 0)

386 stdout "even!"

387 i.write (i.add 1)

Here, while and if are the objects referred to as
attributes of an object bool , while i is a mutable
object.

8 Key Features
There are a few features that distinguish EO and φ-
calculus from other existing OO languages and object
theories, while some of them are similar to what other
languages have to offer. The Section is not intended to
present the features formally, which was done earlier in
Sections 3 and 2, but to compare EO with other pro-
gramming languages and informally identify similarities.

No Classes. EO is similar to other delegation-based
languages like Self [91], where objects are not created
by a class as in class-based languages like C++ or Java,
but from another object, inheriting properties from the
original. However, while in such languages, according
to Fisher and Mitchell [38], “an object may be created,
and then have new methods added or existing methods
redefined,” in EO such object alteration is not allowed.
No Types. Even though there are no types in EO,

compatibility between objects is inferred in compile-time
and validated strictly, which other typeless languages
such as Python, Julia [10], Lua [53], or Erlang [37] can’t
guarantee. Also, there is no type casting or reflection on
types in EO.

No Inheritance. It is impossible to inherit attributes
from another object in EO. The only two possible ways to
re-use functionality is via object composition and deco-
rators. There are OO languages without implementation

inheritance, for example Go [30], but only Kotlin [59]
has decorators as a language feature. In all other lan-
guages, the Decorator pattern [40] has to be implemented
manually [9].
No Methods. An object in EO is a composition

of other objects and atoms: there are no methods or
functions similar to Java or C++ ones. Execution control
is given to a program when atoms’ attributes are referred
to. Atoms are implemented by EO runtime similar to
Java native objects. To our knowledge, there are no other
OO languages without methods.

No Constructors. Unlike Java or C++, EO doesn’t
allow programmers to alter the process of object construc-
tion or suggest alternative paths of object instantiation
via additional constructions. Instead, all arguments are
assigned to attributes “as is” and can’t be modified.
No Static Entities. Unlike Java and C#, EO ob-

jects may consist only of other objects, represented by
attributes, while class methods, also known as static
methods, as well as static literals, and static blocks—
don’t exist in EO. Considering modern programming
languages, Go has no static methods either, but only
objects and “structs” [86].

No Primitive Data Types. There are no primitive
data types in EO, which exist in Java and C++, for
example. As in Ruby, Smalltalk [42], Squeak, Self, and
Pharo, integers, floating point numbers, boolean values,
and strings are objects in EO: “everything is an object”
is the key design principle, which, according to West [93,
p.66], is an “obviously necessary prerequisite to object
thinking.”
No Operators. There are no operators like + or

/ in EO. Instead, numeric objects have built-in atoms
that represent math operations. The same is true for all
other manipulations with objects: they are provided only
by their encapsulated objects, not by external language
constructs, as in Java or C#. Here EO is similar to Ruby,
Smalltalk and Eiffel, where operators are syntax sugar,
while implementation is encapsulated in the objects.

No NULL References. Unlike C++ and Java, there
is no concept of NULL in EO, which was called a “bil-
lion dollar mistake” by Hoare [47] and is one of the
key threats for design consistency [18]. Haskell, Rust,
OCaml, Standard ML, and Swift also don’t have NULL
references.

No Empty Objects. Unlike Java, C++ and all other
OO languages, empty objects with no attributes are for-
bidden in EO in order to guarantee the presence of ob-
ject composition and enable separation of concerns [29]:
larger objects must always encapsulate smaller ones.

No Private Attributes. Similar to Python [67] and
Smalltalk [51], EO makes all object attributes publicly
visible. There are no protected ones, because there is no

EOLANG and φ-calculus

implementation inheritance, which is considered harm-
ful [52]. There are no private attributes either, because
information hiding can anyway easily be violated via
getters, and usually is, making the code longer and less
readable, as explained by Holub [49].

No Global Scope. All objects in EO are assigned to
some attributes. Objects constructed in the global scope
of visibility are assigned to attributes of the system

object of the highest level of abstraction. Newspeak and
Eiffel are two programming languages that does not have
global scope as well.

No Mutability. Similar to Erlang [4], there are only
immutable objects in EO, meaning that their attributes
may not be changed after the object is constructed or
copied. Java, C#, and C++, have modifiers like final ,
readonly , or const to make attributes immutable,
which don’t mean constants though. While the latter
will always expose the same functionality, the former
may represent mutable entities, being known as read-
only references [12]. E.g., an attribute r may have an
object random assigned to it, which is a random number
generator. EO won’t allow assigning another object to
the attribute r , but every time the attribute is read
its value will be different. There are number of OOP
languages that also prioritize immutability of objects.
In Rust [71], for example, all variables are immutable
by default, but can be made mutable via the mut mod-
ifier. Similarly, D [17] has qualifier immutable , which
expresses transitive immutability of data.
No Exceptions. In most OO languages exception

handling [43]: happens through an imperative error-
throwing statement. Instead, EO has a declarative mech-
anism for it, which is similar to Null Object design
pattern [70]: returning an abstract object causes pro-
gram execution to stop once the returned object is dealt
with.

No Functions. There are no lambda objects or func-
tions in EO, which exist in Java 8+, for example. How-
ever, objects in EO have “bodies,” which make it possible
to interpret objects as functions. Strictly speaking, if
objects in EO would only have bodies and no other at-
tributes, they would be functions. It is legit to say that
EO extends lambda calculus, but in a different way com-
paring to previous attempts made by Mitchell et al. [76]
and Di Gianantonio et al. [28]: methods and attributes
in EO are not new concepts, but lower-level objects.

No mixins. There are no “traits” or “mixins” in EO,
which exist in Ruby and PHP to enable code reuse from
other objects without inheritance and composition.

9 Four Principles of OOP
In order to answer the question, whether the proposed
object calculus is sufficient to express any object model,

we are going to demonstrate how four fundamental prin-
ciples of OOP are realized by φ-calculus: encapsulation,
abstraction, inheritance, and polymorphism.

9.1 Abstraction

Abstraction, which is called “modularity” by Booch
et al. [15], is, according to West [93, p.203], “the act of
separating characteristics into the relevant and irrelevant
to facilitate focusing on the relevant without distraction
or undue complexity.” While Stroustrup [90] suggests
C++ classes as instruments of abstraction, the ultimate
goal of abstraction is decomposition, according to West
[93, p.73]: “composition is accomplished by applying
abstraction—the ‘knife’ used to carve our domain into
discrete objects.”
In φ-calculus objects are the elements the problem

domain is decomposed into, which goes along the claim
of West [93, p.24]: “objects, as abstractions of entities
in the real world, represent a particularly dense and
cohesive clustering of information.”

9.2 Inheritance

Inheritance, according to Booch et al. [15], is “a re-
lationship among classes wherein one class shares the
structure and/or behavior defined in one (single inher-
itance) or more (multiple inheritance) other classes,”
where “a subclass typically augments or restricts the
existing structure and behavior of its superclasses.” The
purpose of inheritance, according to Meyer [74], is “to
control the resulting potential complexity” of the design
by enabling code reuse.
Consider a classic case of behaviour extension, sug-

gested by Stroustrup [90, p.38] to illustrate inheritance.
C++ class Shape represents a graphic object on the
canvas (a simplified version of the original code):

388 class Shape {

389 Point center;

390 public:

391 void move(Point to) { center = to; draw();

}↪

392 virtual void draw() = 0;

393 };

The method draw() is “virtual,” meaning that it
is not implemented in the class Shape but may be
implemented in sub-classes, for example in the class
Circle :

394 class Circle : public Shape {

395 int radius;

396 public:

397 void draw() { /* To draw a circle */ }

398 };

The class Circle inherits the behavior of the class
Shape and extends it with its own feature in the method

Yegor Bugayenko

draw() . Now, when the method Circle.move() is
called, its implementation from the class Shape will call

the virtual method Shape.draw() , and the call will be

dispatched to the overridden method Circle.draw()

through the “virtual table” in the class Shape . The
creator of the class Shape is now aware of sub-classes
which may be created long after, for example Triangle ,
Rectangle , and so on.
Even though implementation inheritance and method

overriding seem to be powerful mechanisms, they have
been criticized. According to Holub [48], the main prob-
lem with implementation inheritance is that it intro-
duces unnecessary coupling in the form of the “fragile
base class problem,” as was also formally demonstrated
by Mikhajlov and Sekerinski [75].
The fragile base class problem is one of the reasons

why there is no implementation inheritance in φ-calculus.
Nevertheless, object hierarchies to enable code reuse
in φ-calculus may be created using decorators. This
mechanism is also known as “delegation” and, according
to Booch et al. [15, p.98], is “an alternate approach to
inheritance, in which objects delegate their behavior to
related objects.” As noted by West [93, p.139], delegation
is “a way to extend or restrict the behavior of objects
by composition rather than by inheritance.” Seiter et al.
[87] said that “inheritance breaks encapsulation” and
suggested that delegation, which they called “dynamic
inheritance,” is a better way to add behavior to an object,
but not to override existing behavior.
The absence of inheritance mechanism in φ-calculus

doesn’t make it any weaker, since object hierarchies are
available. Booch et al. [15] while naming four fundamen-
tal elements of object model mentioned “abstraction,
encapsulation, modularity, and hierarchy” (instead of
inheritance, like some other authors).

9.3 Polymorphism

According to Meyer [74, p.467], polymorphism means
“the ability to take several forms,” specifically a variable
“at run time having the ability to become attached to
objects of different types, all controlled by the static dec-
laration.” Booch et al. [15, p.67] explains polymorphism
as an ability of a single name (such as a variable declara-
tion) “to denote objects of many different classes that are
related by some common superclass,” and calls it “the
most powerful feature of object-oriented programming
languages.”
Consider an example C++ class, which is used

by Stroustrup [90, p.310] to demonstrate polymorphism
(the original code was simplified):

399 class Employee {

400 string name;

401 public:

402 Employee(const string& name);

403 virtual void print() { cout << name; };

404 };

Then, a sub-class of Employee is created, overriding

the method print() with its own implementation:

405 class Manager : public Employee {

406 int level;

407 public:

408 Employee(int lvl) :

409 Employee(name), level(lvl);

410 void print() {

411 Employee::print();

412 cout << lvl;

413 };

414 };

Now, it is possible to define a function, which accepts
a set of instances of class Employee and prints them

one by one, calling their method print() .:

415 void print_list(set<Employee*> &emps) {

416 for (set<Employee*>::const_iterator p =

417 emps.begin(); p != emps.end(); ++p) {

418 (*p)->print();

419 }

420 }

The information of wether elements of the set emps

are instances of Employee or Manager is not available
for the print_list function in compile-time. As ex-
plained by Booch et al. [15, p.103], “polymorphism and
late binding go hand in hand; in the presence of poly-
morphism, the binding of a method to a name is not
determined until execution.”
Even though there are no explicitly defined types in

φ-calculus, the comformance between objects is derived
and “strongly” checked in compile time. In the example
above, it would not be possible to compile the code that
adds elements to the set emps , if any of them lacks
the attribute print . Since in EO, there is no reflection
on types or any other mechanisms of alternative object
instantiation, it is always known where objects are con-
structed or copied and what is the structure of them.
Having this information in compile-time it is possible
to guarantee strong compliance of all objects and their
users. To our knowledge, this feature is not available in
any other OOP languages.

9.4 Encapsulation

Encapsulation is considered the most important princi-
ple of OOP and, according to Booch et al. [15, p.51], “is
most often achieved through information hiding, which
is the process of hiding all the secrets of an object that
do not contribute to its essential characteristics; typi-
cally, the structure of an object is hidden, as well as

EOLANG and φ-calculus

the implementation of its methods.” Encapsulation in
C++ and Java is achieved through access modifiers like
public or protected , while in some other languages,
like JavaScript or Python, there are no mechanisms of
enforcing information hiding.
However, even though Booch et al. [15, p.51] believe

that “encapsulation provides explicit barriers among dif-
ferent abstractions and thus leads to a clear separation of
concerns,” in reality the barriers are not so explicit: they
can be easily violated. West [93, p.141] noted that “in
most ways, encapsulation is a discipline more than a real
barrier; seldom is the integrity of an object protected in
any absolute sense, and this is especially true of software
objects, so it is up to the user of an object to respect
that object’s encapsulation.” There are even program-
ming “best practices,” which encourage programmers to
compromise encapsulation: getters and setters are the
most notable example, as was demonstrated by Holub
[49].

The inability to make the encapsulation barrier explicit
is one of the main reasons why there is no information
hiding in φ-calculus. Instead, all attributes of all objects
in φ-calculus are visible to any other object.
In EO the primary goal of encapsulation is achieved

differently. The goal is to reduce coupling between ob-
jects: the less they know about each other the thinner
the the connection between them, which is one of the
virtues of software design, according to Yourdon and
Constantine [94].

In EO the tightness of coupling between objects should
be controlled during the build, similar to how the thresh-
old of test code coverage is usually controlled. At compile-
time the compiler collects the information about the
relationships between objects and calculates the cou-
pling depth of each connection. For example, the object
garage is referring to the object car.engine.size .
This means that the depth of this connection between
objects garage and car is two, because the object
garage is using two dots to access the object size .
Then, all collected depths from all object connections
are analyzes and the build is rejected if the numbers
are higher than a predefined threshold. How exactly the
numbers are analyzed and what are the possible values
of the threshold is a subject for future researches.

10 Complexity
One of the most critical factors affecting software main-
tainability is its complexity. The design of a program-
ming language may either encourage programmers to
write code with lower complexity, or do the opposite and
provoke the creation of code with higher complexity. The
following design patterns, also known as anti-patterns,

increase complexity, especially if being used by less ex-
perienced programmers (most critical are at the top of
the list):

• P1: Returning NULL references in case of er-
ror [47]

• P2: Implementation inheritance (esp. multi-
ple) [48]

• P3: Mutable objects with side-effects [13]
• P4: Type casting [41, 72]
• P5: Utility classes with only static methods [18]
• P6: Runtime reflection on types [18]
• P7: Setters to modify object’s data [49]
• P8: Accepting NULL instead of function argu-

ment [47]
• P9: Global variables and functions [72]
• P10: Singletons [18, 80]
• P11: Factory methods instead of constructors [18]
• P12: Exception swallowing [84]
• P13: Getters to retrieve object’s data [49]
• P14: Code reuse via mixins (we can think of this

as a special case of workaround for the lack of
multiple inheritance) [72]

• P15: Explanation of logic via comments [69, 72]
• P16: Temporal coupling between statements [18]
• P17: Frivolous inconsistent code formatting [69,

72]

In Java, C++, Ruby, Python, Smalltalk, JavaScript,
PHP, C#, Eiffel, Kotlin, Erlang, and other languages
most of the design patterns listed above are possible and
may be utilized by programmers in their code, letting
them write code with higher complexity. To the contrary,
they are not permitted in EO by design:

• P1, P8 → There are no NULLs in EO
• P5, P11, P10 → There are no static methods
• P2 → There is no inheritance
• P3, P7 → There are no mutable objects
• P4, P6 → There are no types
• P9 → There is no global scope
• P12 → There are no exceptions
• P14 → There are no mixins
• P15 → Inline comments are prohibited
• P16 → There are no statements
• P17 → The syntax explicitly defines style

Thus, since in EO all patterns listed above are not
permitted by the language design, EO programs will
have lower complexity while being written by the same
group of programmers.

11 Related Works
Attempts were made to formalize OOP and introduce ob-
ject calculus, similar to lambda calculus [6] used in func-
tional programming. For example, Abadi and Cardelli [1]
suggested an imperative calculus of objects, which was

Yegor Bugayenko

extended by Bono and Fisher [14] to support classes,
by Gordon and Hankin [44] to support concurrency
and synchronisation, and by Jeffrey [58] to support dis-
tributed programming.
Earlier, Honda and Tokoro [50] combined OOP and

π-calculus in order to introduce object calculus for asyn-
chronous communication, which was further referenced
by Jones [60] in their work on object-based design nota-
tion.
A few attempts were made to reduce existing OOP

languages and formalize what is left. Featherweight Java
is the most notable example proposed by Igarashi et al.
[54], which is omitting almost all features of the full
language (including interfaces and even assignment) to
obtain a small calculus. Later it was extended by Jagan-
nathan et al. [55] to support nested and multi-threaded
transactions. Featherweight Java is used in formal lan-
guages such Obsidian [25] and SJF [92].
Another example is Larch/C++ [21], which is a for-

mal algebraic interface specification language tailored to
C++. It allows interfaces of C++ classes and functions
to be documented in a way that is unambiguous and
concise.
Several attempts to formalize OOP were made by

extensions of the most popular formal notations and
methods, such as Object-Z [32] and VDM++ [33]. In
Object-Z, state and operation schemes are encapsulated
into classes. The formal model is based upon the idea of
a class history [31]. Although, all these OO extensions
do not have comprehensive refinement rules that can be
used to transform specifications into implemented code
in an actual OO programming language, as was noted
by Paige and Ostroff [81].
Bancilhon and Khoshafian [5] suggested an object

calculus as an extension to relational calculus. Jankowska
[56] further developed these ideas and related them to a
Boolean algebra. Lee et al. [65] developed an algorithm
to transform an object calculus into an object algebra.
However, all these theoretical attempts to formalize

OO languages were not able to fully describe their fea-
tures, as was noted by Nierstrasz [78]: “The development
of concurrent object-based programming languages has
suffered from the lack of any generally accepted formal
foundations for defining their semantics.” In addition,
when describing the attempts of formalization, Eden [35]
summarized: “Not one of the notations is defined for-
mally, nor provided with denotational semantics, nor
founded on axiomatic semantics.” Moreover, despite
these efforts, Ciaffaglione et al. [22, 23, 24] noted in
their series of works that a relatively little formal work
has been carried out on object-based languages and it
remains true to this day.

12 Acknowledgments
Many thanks to (in alphabetic order of last names)
Fabricio Cabral, Kirill Chernyavskiy, Piotr Chmielowski,
Danilo Danko, Konstantin Gukov, Ali-Sultan Kirgizbaev,
Nikolai Kudasov, Alexander Legalov, Tymur λysenko,
Alexandr Naumchev, Alonso A. Ortega, John Page, Alex
Panov, Alexander Pushkarev, Marcos Douglas B. San-
tos, Alex Semenyuk, Violetta Sim, Sergei Skliar, Stian
Soiland-Reyes, Viacheslav Tradunskyi, Ilya Trub, and
César Soto Valero for their contribution to the develop-
ment of EO and φ-calculus.

References
[1] Mart́ın Abadi and Luca Cardelli. 1995. An Imperative

Object Calculus. Theory and Practice of Object Systems 1,

3 (1995).

[2] Bowen Alpern, Anthony Cocchi, Stephen Fink, and David
Grove. 2001. Efficient Implementation of Java Interfaces:

Invokeinterface Considered Harmless. In Conference on
Object-Oriented Programming, Systems, Languages, and

Applications.

[3] Deborah J Armstrong. 2006. The Quarks of Object-Oriented
Development. Commun. ACM 49, 2 (2006).

[4] Joe Armstrong. 2010. Erlang. Commun. ACM 53, 9 (2010).

[5] Francois Bancilhon and Setrag Khoshafian. 1985. A Calculus
for Complex Objects. In Symposium on Principles of

Database Systems.

[6] Hendrik P Barendregt. 2012. The Lambda Calculus: Its
Syntax and Semantics. College Publications.

[7] Kent Beck. 1997. Smalltalk Best Practice Patterns. Prentice

Hall.
[8] David Scott Bernstein. 2016. Beyond Legacy Code: Nine

Practices to Extend the Life (and Value) of Your Software.
Pragmatic Bookshelf.

[9] Lorenzo Bettini, Viviana Bono, and Betti Venneri. 2011.

Delegation by Object Composition. Science of Computer
Programming 76 (Nov. 2011).

[10] Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan

Edelman. 2012. Julia: A Fast Dynamic Language for
Technical Computing.

[11] Xuan Bi and Bruno C d S Oliveira. 2018. Typed First-Class

Traits. In European Conference on Object-Oriented
Programming.

[12] Adrian Birka and Michael D Ernst. 2004. A Practical Type
System and Language for Reference Immutability. ACM
SIGPLAN Notices 39, 10 (2004).

[13] Joshua Bloch. 2016. Effective Java. Pearson Education
India.

[14] Viviana Bono and Kathleen Fisher. 1998. An Imperative,
First-Order Calculus with Object Extension. In European
Conference on Object-Oriented Programming.

[15] Grady Booch, Robert A Maksimchuk, Michael Engle, Bobbi

Young, Jim Conallen, and Kelli Houston. 2007.
Object-Oriented Analysis and Design with Applications.

[16] Jan Bosch. 1997. Object-Oriented Frameworks: Problems &
Experiences.

[17] Walter Bright, Andrei Alexandrescu, and Michael Parker.
2020. Origins of the D programming language. ACM on
Programming Languages 4 (2020).

[18] Yegor Bugayenko. 2016. Elegant Objects. Vol. 1. Amazon.

EOLANG and φ-calculus

[19] Eden Burton and Emil Sekerinski. 2014. Using Dynamic
Mixins to Implement Design Patterns. In European

Conference on Pattern Languages of Programs.

[20] Jeffrey Carter. 1997. OOP vs. Readability. ACM SIGADA
Ada Letters XVII (March 1997).

[21] Yoonsik Cheon and Gary T Leavens. 1994. A Quick

Overview of Larch/C++.
[22] Alberto Ciaffaglione, Luigi Liquori, and Marino Miculan.

2003. Imperative Object-Based Calculi in Co-inductive Type
Theories. In International Conference on Logic for

Programming Artificial Intelligence and Reasoning.

[23] Alberto Ciaffaglione, Luigi Liquori, and Marino Miculan.
2003. Reasoning on an Imperative Object-based Calculus in

Higher Order Abstract Syntax. In MERLIN’03: Proceedings

of the 2003 ACM SIGPLAN Workshop on Mechanized
Reasoning About Languages with Variable Binding.

[24] Alberto Ciaffaglione, Luigi Liquori, and Marino Miculan.

2007. Reasoning about Object-Based Calculi in
(Co)Inductive Type Theory and the Theory of Contexts.

Journal of Automated Reasoning 39 (2007).
[25] Michael J. Coblenz, Reed Oei, Tyler Etzel, Paulette

Koronkevich, Miles Baker, Yannick Bloem, Brad A. Myers,

Joshua Sunshine, and Jonathan Aldrich. 2019. Obsidian:
Typestate and Assets for Safer Blockchain Programming.

CoRR 1 (2019).

[26] Ole-Johan Dahl and Kristen Nygaard. 1966. SIMULA: an
ALGOL-based simulation language. Commun. ACM 9, 9

(1966).

[27] Harvey M. Deitel and Paul J. Deitel. 2007. Java How to
Program (7th ed.). Prentice Hall.

[28] Pietro Di Gianantonio, Furio Honsell, and Luigi Liquori.

1998. A Lambda Calculus of Objects with Self-Inflicted
Extension. In Conference on Object-Oriented programming,

Systems, Languages, and Applications.
[29] Edsger W Dijkstra. 1982. On the Role of Scientific Thought.

In Selected Writings on Computing: a Personal Perspective.

Springer Verlag.
[30] Alan A.A. Donovan and Brian W. Kernighan. 2015. The Go

Programming Language. Addison-Wesley Professional.

[31] David Duke and Roger Duke. 1990. Towards a Semantics for
Object-Z. In International Symposium of VDM Europe.

[32] Roger Duke, Paul King, Gordon Rose, and Graeme Smith.

2000. The Object-Z Specification Language. Citeseer.
[33] Eugene Durr and Jan Van Katwijk. 1992. VDM++, A

Formal Specification Language for Object-Oriented Designs.
In Proceedings Computer Systems and Software Engineering.

[34] Bruce Eckel. 2006. Thinking in Java (3 ed.). Prentice Hall.
[35] Amnon Eden. 2002. A Visual Formalism for Object-Oriented

Architecture.
[36] Amnon H Eden and Yoram Hirshfeld. 2001. Principles in

Formal Specification of Object-Oriented Architectures. In

CASCON’01: Proceedings of the 2001 conference of the

Centre for Advanced Studies on Collaborative research.
[37] Ericsson AB 2020. Erlang/OTP System Documentation.

Ericsson AB.
[38] Kathleen Fisher and John C Mitchell. 1995. A

Delegation-Based Object Calculus with Subtyping. In

International Symposium on Fundamentals of Computation
Theory.

[39] Martin Fowler. 2005.

https://www.martinfowler.com/bliki/FluentInterface.html
[40] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. 1994. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison Wesley.
[41] Gannimo. 2017. Type Confusion: Discovery, Abuse, and

Protection. Chaos Computer Club e.V..

[42] Adele Goldberg and David Robson. 1983. Smalltalk-80: the
Language and Its Implementation. Addison-Wesley.

[43] John B Goodenough. 1975. Exception Handling: Issues and

a Proposed Notation. Commun. ACM 18, 12 (1975).
[44] Andy Gordon and Paul D. Hankin. 1998. A Concurrent

Object Calculus: Reduction and Typing.

[45] James Gosling and Henry McGilton. 1995. The Java
Language Environment. Sun Microsystems Computer

Company 2550 (1995).
[46] Paul Graham. 2004. Hackers & Painters: Big Ideas from the

Computer Age. O’Reilly Media.

[47] Tony Hoare. 2009. Null References: The Billion Dollar
Mistake.

[48] Allen Holub. 2003. Why Extends is Evil.

[49] Allen Holub. 2004. More on Getters and Setters.
[50] Kohei Honda and Mario Tokoro. 1991. An Object Calculus

for Asynchronous Communication. In European Conference
on Object-Oriented Programming.

[51] John Hunt. 1997. Smalltalk and Object Orientation: an

Introduction. Springer Science & Business Media.
[52] John Hunt. 2000. Inheritance Considered Harmful. In The

Unified Process for Practitioners. Springer.

[53] Roberto Ierusalimschy. 2016. Programming in Lua, Fourth
Edition. Lua.Org.

[54] Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler.
2001. Featherweight Java: a Minimal Core Calculus for Java
and GJ. ACM Transactions on Programming Languages

and Systems 23, 3 (2001).
[55] Suresh Jagannathan, Jan Vitek, Adam Welc, and Antony

Hosking. 2005. A Transactional Object Calculus. Science of

Computer Programming 57, 2 (2005).
[56] Beata Jankowska. 2003. Yet Another Object-oriented Data

Model and Its Application. Control and Cybernetics 32 (Jan.

2003).
[57] Thomas Jech. 2013. Set Theory. Springer Science &

Business Media.

[58] Alan Jeffrey. 1999. A Distributed Object Calculus. In
Proceedings of FOOL.

[59] Dmitry Jemerov and Svetlana Isakova. 2017. Kotlin in

Action. Manning Publications Company.
[60] Cliff B. Jones. 1993. A Pi-calculus Semantics for an

Object-Based Design Notation. In International Conference
on Concurrency Theory.

[61] Alan Kay. 1986. FLEX—A Flexible Extendable Language.

Master’s thesis. University of Utah.
[62] Alan Kay. 1997. The Computer Revolution Hasn’t

Happened Yet.
[63] Zeba Khanam. 2018. Barriers to Refactoring: Issues and

Solutions. International Journal on Future Revolution in

Computer Science & Communication Engineering 4 (2018).

[64] Peter J Landin. 1966. The Next 700 Programming
Languages. Commun. ACM 9, 3 (1966).

[65] Kwak Lee, Hoon-Sung Ryu, Hong-Ro, and Keun-Ho. 1996.
A Translation of an Object Calculus into an Object Algebra.

The Transactions of the Korea Information Processing

Society 3 (1996).
[66] Y Daniel Liang. 2012. Introduction to Java Programming:

Brief Version (9 ed.). Pearson Education, Inc.
[67] Mark Lutz. 2013. Learning Python: Powerful

Object-Oriented Programming. O’Reilly Media.

https://www.martinfowler.com/bliki/FluentInterface.html

Yegor Bugayenko

[68] Ole Lehrmann Madsen and Birger Møller-Pedersen. 1988.
What Object-Oriented Programming May Be-and What It

Does Not Have to Be. In European Conference on

Object-Oriented Programming.
[69] Robert C. Martin. 2008. Clean Code: A Handbook of Agile

Software Craftsmanship (1 ed.). Prentice Hall PTR, USA.

[70] Robert C Martin, Dirk Riehle, and Frank Buschmann. 1997.

Pattern Languages of Program Design 3. Addison-Wesley.

[71] Nicholas D Matsakis and Felix S Klock. 2014. The Rust
Language. ACM SIGADA Ada Letters 34, 3 (2014).

[72] Steve McConnell. 2004. Code Complete, Second Edition.

Microsoft Press, USA.
[73] Steven John Metsker. 2002. Design Patterns Java Workbook.

Addison-Wesley.

[74] Bertrand Meyer. 1997. Object-Oriented Software
Construction. Prentice Hall.

[75] Leonid Mikhajlov and Emil Sekerinski. 1998. A Study of the

Fragile Base Class Problem. In European Conference on
Object-Oriented Programming.

[76] John C Mitchell, Furio Honsell, and Kathleen Fisher. 1993.
A Lambda Calculus of Objects and Method Specialization.

In IEEE Symposium on Logic in Computer Science.

[77] Oscar Nierstrasz. 1989. A Survey of Object-Oriented
Concepts.

[78] Oscar Nierstrasz. 1991. Towards an Object Calculus. In

European Conference on Object-Oriented Programming.
[79] Oscar Marius Nierstrasz. 2010. Ten Things I Hate About

Object-Oriented Programming. Journal of Object

Technology 9, 5 (2010).
[80] R. Nystrom. 2014. Game Programming Patterns. Genever

Benning.

[81] Richard F Paige and Jonathan S Ostroff. 1999. An
Object-Oriented Refinement Calculus.

[82] Tim Rentsch. 1982. Object Oriented Programming. ACM
SIGPLAN Notices 17, 9 (1982).

[83] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan

Vitek. 2010. An Analysis of the Dynamic Behavior of
JavaScript Programs. In Conference on Programming

Language Design and Implementation.

[84] Jonathan Rocha, Hugo Melo, Roberta Coelho, and Bruno
Sena. 2018. Towards a Catalogue of Java Exception
Handling Bad Smells and Refactorings. In Proceedings of the

25th Conference on Pattern Languages of Programs (PLoP
’18). The Hillside Group, USA.

[85] Herbert Schildt. 2018. Java: The Complete Reference,
Eleventh Edition (11th ed.). McGraw-Hill Education.

[86] Frank Schmager, Nicholas Cameron, and James Noble. 2010.

GoHotDraw: Evaluating The Go Programming Language
With Design Patterns. In PLATEAU’10: Evaluation and

Usability of Programming Languages and Tools.
[87] Linda M Seiter, Jens Palsberg, and Karl J Lieberherr. 1998.

Evolution of Object Behavior Using Context Relations.

IEEE Transactions on Software Engineering 24, 1 (1998).

[88] Asaf Shelly. 2015. Flaws of Object Oriented Modeling.
https://software.intel.com/content/www/us/en/develop/
blogs/flaws-of-object-oriented-modeling.html

[89] Mark Stefik and Daniel G Bobrow. 1985. Object-Oriented
Programming: Themes and Variations. AI Magazine 6, 4

(1985).
[90] Bjarne Stroustrup. 1997. The C++ Programming Language

(3 ed.). Addison-Wesley Professional.

[91] David Ungar and Randall B Smith. 1987. Self: The Power of
Simplicity. In ACM SIGPLAN Conference on

Object-Oriented Programming Systems, Languages and

Applications.
[92] Artem Usov and Prnela Dardha. 2020. SJF: An

Implementation of Semantic Featherweight Java, In

Coordination Models and Languages. COORDINATION
2020. Lecture Notes in Computer Science 12134.

[93] David West. 2004. Object Thinking. Pearson Education.

[94] Edward Yourdon and Larry L Constantine. 1979. Structured

Design: Fundamentals of a Discipline of Computer Program

and Systems Design. Prentice-Hall.

https://software.intel.com/content/www/us/en/develop/blogs/flaws-of-object-oriented-modeling.html
https://software.intel.com/content/www/us/en/develop/blogs/flaws-of-object-oriented-modeling.html

	Abstract
	1 Introduction
	1.1 Lack of Formal Model
	1.2 Complaints of Programmers
	1.3 High Complexity
	1.4 Solution Proposed

	2 Syntax
	2.1 Identity, State, and Behavior
	2.2 Indentation
	2.3 EO to XML
	2.4 Data Objects and Arrays
	2.5 Varargs
	2.6 Scope Brackets
	2.7 Inner Objects
	2.8 Decorators
	2.9 Anonymous Abstract Objects
	2.10 Constants
	2.11 Metas and License
	2.12 Atoms

	3 Calculus
	3.1 Objects and Data
	3.2 Attributes
	3.3 Abstraction
	3.4 Application
	3.5 Inner and Parent Objects
	3.6 Decoration
	3.7 Atoms
	3.8 Locators

	4 Semantics
	4.1 Object Graph
	4.2 GMI
	4.3 Transformation Rules
	4.4 Dataization

	5 Pragmatics
	6 Examples
	6.1 Fibonacci Number
	6.2 Determining Leap Year
	6.3 Division by Zero
	6.4 Date Builder
	6.5 Streams

	7 Mappings
	7.1 Inheritance
	7.2 Classes and Constructors
	7.3 Mutability
	7.4 Type Reflection
	7.5 Exception Handling
	7.6 Control Flow Statements

	8 Key Features
	9 Four Principles of OOP
	9.1 Abstraction
	9.2 Inheritance
	9.3 Polymorphism
	9.4 Encapsulation

	10 Complexity
	11 Related Works
	12 Acknowledgments
	References

